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Ampilification of Electromagnetic Signals by lon Channels

Juris Galvanovskis and John Sandblom
Department of Medical Biophysics, Géteborg University, 413 90 Géteborg, Sweden

ABSTRACT Cells may respond to the exposure of low-frequency electromagnetic fields with changes in cell division, ion
influx, chemical reaction rates, etc. The chain of events leading to such responses is difficult to study, mainly because of
extremely small energies associated with low-frequency fields, usually much smaller than the thermal noise level. However,
the presence of stochastic systems (for instance, ion channels) provides a basis for signal ampilification, and could therefore,
despite the low signal-to-noise ratio of the primary response, lead to the transmission of weak signals along the signaling
pathways of cells. We have explored this possibility for an ion channel model, and we present a theory, based on the
formalism of stochastically driven processes, that relates the time averages of the ion channel currents to the amplitude and
frequency of the applied signal. It is concluded from this theory that the signal-to-noise ratio increases with the number of
channels, the magnitude of the rate constants, and the frequency response of the intracellular sensing system (for instance,
a calcium oscillator). The amplification properties of the stochastic system are further deduced from numerical simulations
carried out on the model, which consists of multiple identical two-state channels, and the behavior for different parameters
is examined. Numerical estimates of the parameters show that under optimum conditions, even very weak low-frequency
electromagnetic signals (<100 Hz and down to 100 n.T) may be detected in a cellular system with a large number of ion channels.

INTRODUCTION

Biological systems have been shown to respond to magnetic
fields of low intensity and low frequency at the cellular
level as well as in biochemical reactions (see, for example,
Carpenter and Ayrapetyan, 1994). However, on physical
grounds it has been argued that the energy of the fields is
much too low relative to the noise inherent in biological
systems for the field to produce any observable effects
(Schwan, 1985; Weaver and Astumian, 1990; Adair, 1991,
1994). Conclusions like these have mainly been arrived at
by considering the physical mechanisms of primary inter-
action between the magnetic fields and possible biological
sites, such as electrical charges in motion, molecules with
magnetic moments, or local currents from the generation of
electric fields by a varying magnetic field. In all of these
cases, the interaction is very weak at field strengths less than
1 mT and frequencies below 1 kHz.

On the other hand, in electronic devices it is quite pos-
sible for weak signals, much weaker than the noise level, to
be detected in a system as long as the detector bandwidth is
narrowly limited around the signal frequency. A signal may
also be detected in an inherently noisy system if the system
is composed of a series of parallel detectors where the
output is a summation of the simultaneous input of the
signal into all detectors.

Such amplification mechanisms have not been widely
discussed in the context of biological systems, however, and
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the focus has been rather on possible primary interaction
mechanisms that may be specific to biological systems (see,
for example, Nordén and Ramel, 1992; Carpenter and Ay-
rapetyan, 1994).

We have therefore investigated the possibility of ampli-
fication of weak electromagnetic signals in cellular systems
by considering ion channels whose gating properties are
modulated by external fields in a way that has been dis-
cussed in connection with the phenomenon of stochastic
resonance (McNamara and Wiesenfeld, 1989; Gammaitoni
et al., 1989; Zhou and Moss, 1990; Petracchi et al., 1993,
1994; Kruglikov and Dertinger, 1994). Single channel cur-
rents are generated by the random switching of channels
between open and closed states, and a periodic signal that
interacts with the kinetics of each channel will also modu-
late the total membrane current. The formal theory for such
periodically driven stochastic processes has been developed
(McNamara and Wiesenfeld, 1989; Jung, 1993) and has
been applied to a wide variety of naturally occurring and
artificial processes, such as geological phenomena (Benzi et
al., 1982; Nicolis, 1982) and neural networks in biology
(Longtin et al., 1991; Collins et al., 1995, 1996), and, in
electronics, to superconducting quantum interference de-
vices (Hibbs et al., 1995).

We have applied the concepts of such periodically driven
stochastic processes to a model consisting of ion channels
modulated by a weak sinusoidally varying magnetic field.
The model is basically that of McNamara and Wiesenfeld
(1989) who developed a theory for a single bistable system
modulated by a periodic signal. We have extended the
treatment to the case of unequal opening and closing rates
and to multichannel systems. Also, in our treatment we have
used the approach developed by Jung (1993) for stochasti-
cally driven processes, and we have made use of the statis-
tics of multichannel systems (DeFelice, 1981). From the
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theory, it is concluded that factors such as the magnitude of
the rate constants, the number of channels, and the fre-
quency of the modulating signal will influence the signal-
to-noise ratio, and it is shown that a suitable choice of
channel parameters can lead to a high degree of signal
amplification. We conclude that under optimal conditions
these factors can combine to amplify the weak primary
response generated by the field to a degree that is suffi-
ciently above the noise level to allow the signal to be
detected by a cell.

A presentation of the theory will be given below, and the
properties of ion channels as signal detectors will be exam-
ined by model simulations.

THEORY

The purpose of the theory is to calculate time averages of
the total current I(¢) through a set of N channels when the
kinetics of opening and closing the channels are synchro-
nously modulated by a sinusoidal signal. This is done by
setting up and solving the master equation for the time
dependence of the channel states. From the solution to the
master equation, it is then possible to calculate averages and
power spectra of the channel currents. The procedure fol-
lows partly one that has been developed for periodically
driven stochastic processes (Jung, 1993), and the first step is
to derive expressions that apply to single-channel currents.
The treatment is then extended to multichannel systems.

Master equation for a single channel

We proceed from a simple two-state (open-closed) channel,
whose open and closed states we designate by O and C,
respectively. An applied AC field (electric or magnetic) is
assumed to perturb the rate constants for opening and clos-
ing (Fig. 1). As shown in the figure, the upward deflection

o)

FIGURE 1 The ion current flowing through a single externally modu-
lated ion channel is shown (rop) together with the modulating signal
(below). The figure demonstrates, in an exaggerated manner, the modulat-
ing effect of the signal on channel dwell times. At the highest signal value
the open times are increased and the closed times are diminished; the
opposite takes place half a period later. O, Open state; C, closed state; w,,
angular frequency of the signal.
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of the AC signal decreases the closing rate and increases the
opening rate, and this leads to an increased probability that
the channel will be in the open state. The downward de-
flection creates the opposite effect and leads to an increased
probability that the channel will be in the closed state.

The rate constants for this system are assumed to be
perturbed by a periodic term,

k°(f) = k3e“ T = k5(1 + p°cos wyt) (1a)

k(1) = k5eSOKT = k5(1 + p°cos wy) (1b)

where kg, k§ are the values of the unperturbed rate constants;
p° and p° are the amplitudes of the modulated parts, as-
sumed to be small so that only the first-order terms need to
be retained in the expansion of the exponential functions
(Benzi et al., 1982; McNamara and Wiesenfeld, 1989; Jung
and Hinggi, 1991; Jung, 1993); and w, is the angular
frequency of the modulating signal.

Fig. 2 shows the energy profile for the transitions be-
tween open and closed states and where the meaning of the
kinetic constants is made apparent.

In this simple two-state model, we can write the rate
equations for the probabilities #°(¢) and n°(¢) that the chan-
nel is either open or closed, the so-called master equations,
as

dn°(¢)
e —k°(6)n°() + k(Hn(¢)
2)
dn(z)
e —k(On°(r) + k°(6)n°(r)

To solve these equations, we introduce, for convenience and
shortness of notation, the following constants:

K* =3+ (3a)
K" =k-k
Ky = kp° + kop* (3b)

K; = Kep° = Kip®

(b)

Cs 0
& e

FIGURE 2 The energy profile for the transitions between open (O) and
closed (C) states in an unmodulated (a) and in a modulated (b) channel.
The figure shows the meaning of the kinetic constants. kg, k5, Unperturbed
rate constants; &°, &°, modulating signals for open and closed states,
correspondingly.
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We also take into account that n°(t) + n°(r) = 1, and
combine Eqgs. 2 and 3 to get

dni
N - &k + K cosoNO+K (&

where N(¢) and K are defined as

—_— 0 C K;
N(@) = n°(t) — n(¢) + Fp (5a)

co KK KK (0" —p) (K~ (K))

K 2 K e
n°(#) and n°(¢) can then be obtained from N(#) by
o= L _ K
n°(t) = 3 1- K_; + N(2) (6a)
R )
n(t) = ) 1+ K—;, — N@) (6b)

To solve for N(f), we note that Eq. 4 is a linear differential
equation with a periodic coefficient, and such an equation
can be solved explicitly in terms of modified Bessel func-
tions of the first kind 7,, as will be shown below.

Solution to the master equation
The formal solution to Eq. 4 is straightforward and is given
by
t
N(7) = N(tp)e™ ™" + Ke™™® f edt @)
to
where
K+
f) = f [ko() + k°()]de = K™t + U” sinwg  (8)
The integral in Eq. 7 can be split into two parts:

t t to
f Ods = J Ods — J eds )
to —® -®

and, by substitutions, 7 = ¢t — ¢ in the first integral, and 7'
= t, — ¢’ in the second integral. Eq. 7 reads

N(f) = =0

N(to) - K j ef(to-f’)-f(!o)d.‘./
0

i (10)

+ KJ efn-fod

0

where the functions f are given by Eq. 8, with respective
arguments.
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N(1) is seen from this equation to be composed of two
terms, the first of which is a decaying oscillatory function in
t. The second term, which describes a quasistationary state,
is periodic, with a period of T, = 1/27w,. This stationary
periodic part of N(#), given by the last term in Eq. 10, will
be denoted by N, (¢) and will be used later to compute the
stationary variances and power spectrum of the channel
current.

The exponential terms in Eq. 10 can be expanded in
Bessel functions with the help of the following formula:

©

&% = > [ (a)cos vx an

—o0

where I, are modified Bessel functions of the first kind.
After some algebraic manipulations, we get

- (-]
]Vs (t) =K J ef(!-‘f)—f(t)d1.= Kj e—K"w+(K;/ws)[sin ot=7)=sin ol

0 0

o0 o . 2
=K j ey (-K;,* %glr)cos vws(t - %)d'r
0 —o0

12

The function N(?) is seen to form a Fourier series in #:

N = 2 c,e™ (13a)

where, taking into account that I, = I_,, the coefficients c,,
can be written

* sin (wJ/2)T\ .
=K j e'K"I,,(—K; ——i,“;z ) )e“""’*‘*’z’df (13ba)

0

The absolute values of ¢, are therefore given by

b sin (wy/2) 7

2_ K+ | _ “
|e,]> = K* j j e I,,( K, /2 )
0

0

14

sin (wy/2) 7' i o
I,,(—K; T)COS(V(OS 3 dr’ dr’

The integrand in this expression consists of an exponential
decaying term multiplied by Bessel functions with oscillat-
ing arguments and by a cosine function. The signal ampli-
tude p enters into the arguments of the Bessel functions as
part of K; (see Eq. 3b). For the function N(?) (Egs. 13), we
can now compute the power spectra of the channel current,
using the formalism of stochastically driven processes.
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Power spectra of channel currents

Jung (1993) has shown that the power spectrum of a peri-
odically driven stochastic process contains delta peaks at
multiples of the modulating frequency, and the weights of
these delta peaks are the Fourier coefficients of the quasis-
tationary ensemble average of the dynamic variable. Be-
cause, in our case, the dynamic variable is the current that
has two values 0 and i, the quasistationary ensemble average
is equal to i - n°(?),. The contribution to the ion current
power spectrum Py(w) (energy/angular frequency) by the
modulating signal is therefore given by

-2 =]
P(w) = lz Dlefd(w — voy), v#0 (15)

where the coefficients |c,|? are given by Eq. 14. The number
4 in the denominator appears because the open channel
probability, apart from a constant, is only one-half of N(¢)
(see Eq. 6a). Because the Bessel functions are symmetrical
I, = 1_)), Eq. 15 can also be written in terms of positive
frequencies only:

D ©
P@) = 5 D80 — vo) (16)
1

These peaks in the power spectrum of the channel current
originate from a superposition of a periodic signal on a
stochastic process. This is an interesting result, which dem-
onstrates the essential nonlinearity of the system, that leads
to the appearance of the higher harmonics in the resulting
power spectrum of the stochastic system, although the im-
posed signal has only a single frequency. However, these
additional peaks in the power spectrum are of the second
order or higher and are not discussed in more detail in this
article.

Power spectra of multichannel systems

We now extend the treatment to a system of N identical
channels of the type described above. Each channel can be
in the closed or open state. The current through an open
channel has the value i.

If k channels are open at a given instant of time ¢, the total
current I(¢) at that instant is given by

1) = ki a7

where I(¢) is a stochastic variable. The probability P(k) that
k channels are open in a set of N channels is given by
(DeFelice, 1981)

PO) = v =1

(o)) % (18)

We have also assumed that the applied periodic signal
acts synchronously on all channels, which means that n°(¢)
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and n°(¢) are the same for all channels. The quasistationary
mean and variance of I(¢) are then given by

mean {I(r)) = 2, kP(k) = Nin°(p),

k=1

(19a)

variance

(P = 2 K*P(k) =

k=1

Nfn°(t)n(0), + N*i%(n°())>  (19b)

Because I(¢) is the dynamic variable for the multichannel
case, it follows from Eq. 19a and the theory of Jung (1993)
that the power spectral component P (w) originating from
the periodic signal is given by the Fourier expansion of
n°(f), multiplied by (Ni)*/2:

(Nl

P(w) = (20

We will now compare the signal power expressed by Eq. 20
with the noise generated by channel fluctuations.

Channel noise

The Lorentzian part of the total power spectrum of the
channel current is calculated from the quasistationary aver-
ages (Eq. 19). However, because Eq. 19 contains periodic
functions, it is necessary to perform a phase averaging of
these quasistationary functions over an entire period,

1 Ts
@) = f n®(r),dt (21a)

0

and

Ts Ts
(P(@t),), = Ni? % f n°(t)n(¢)dt + N*i2 % j (n°(2),)*ds
s 0 s 0

(21b)

To integrate these expressions, we will use the Fourier
expansions of n°(f); and n°(r),

i .
1
n°(t), = 5 1——+ }‘,c e (22a)
| _
ne(t), = 3 1 + — = E c et (22b)
where c,, are given by Eq. 13b.
Then the mean value of the current reads
I = Ni ! 1 K + 2
ION=Niz |1 -+ @3)
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To evaluate the variance, we first calculate the second term
in Eq. 21b:

Ts 2
N2 %SJ (n°(2),)%dr = % (Ni)2([1 - % + co])

0 P
1 =
+5 Wi X e 4
1

It is seen that this term consists of the square of the mean
current and the total power of the periodical part of the
current. Therefore, the first term in Eq. 21b must express the
total noise power generated by the stochastic process. We
calculate this term in a similar way to get

1 (™
Nizi,— f n°(t);nc(¢) dt

0
1 K V) 1o
all— K% —512|Cv|

In summary, therefore, the second term of Eq. 24 gives
the total power of the periodic current component and Eq.
25 gives the total noise power. By division, we get the
signal-to-noise ratio (SNR):

(25)

= Ni*

NZ{le,f?

SNR =
V(1 — (Ky 1K — o) — Zilc’

(26a)

If instead of powers, we use amplitudes, Eq. 26a can be
rewritten as

signal amplitude _ \/NETIC vl2
noise amplitude \fio(1 — (K;/K; — ¢i* — =7 |ef
(26b)

|c,|? in Eq. 26 are obtained from Eq. 14. Two special cases
of interest simplify the signal-to-noise ratio.

0, << K*

The exponential term in Eq. 14 decays rapidly for large
values of K* in this case and contributes to the integral only
as long as w,7 << 1. Equation 14 then reduces to

2
le,)* = Kz[J e‘K+’I,,(-K;T)d7]

0

27

_ K2 |’K+ — ](K+)2 _ (K;)2:|2V

- Kt? — K;zl_ K

P
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If, in addition, the value of p is very small, Eq. 27 reduces
further to

, K2 K;— 2v -
|Cv| - (K+)2 2K+ ( )
It is seen from this expression that the higher order terms in

v decrease faster with smaller p values than the lower order
terms. Therefore, the signal-to-noise ratio for small p becomes

N(p° = p)(K") - (K))

SNR = § (K+)2

(29)

Ky < o

Because in this case the Bessel functions decrease rapidly
for higher values of v, we calculate only the first term (v =
1) in Eq. 14. We further expand the Bessel functions in
power series of the argument and retain only the first term.
Equation 14 for v = 1 then reduces to

e sin wJ/2 7'
o=t [ [Terwon(- o)

Wy
0 Y0
sin w/2 7' T -9
. (—K; L)cos ws( 5 )d'r’ dr’

_(EV K
2K*) o} + K*?

_(K'K; — K K;})?

T 2KH)H@? + KT

B (p° - p°)2 (K — (K7)?
"\ 2 ) @KYHHe? + (KT

(30)

The signal-to-noise ratio in this case is therefore given by a
formula,

N (p° = pY(E)? — (K))

SNR = 8 (K*)? + !

€29

Numerical simulations

The properties of the model described in the previous sec-
tion can be shown by carrying out numerical simulations on
a system of identical two-state channels. The starting point
is to create a simple simulation process that allows one to
obtain the time course of events for a bistable system (in this
case a single-channel current recording in real time) per-
forming transitions between two states.

To create a simulation process for this model, we con-
sider a system in which switching between the closed and
open states of a channel is a purely random simple Poisson
process driven only by noise. The residence times in this
case are exponentially distributed. The average residence
(dwell) time 7 in the corresponding state is equal to the
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inverse transition rate k for leaving it. Then, to generate a set
of lifetime values for a particular simulation experiment, the
source equation can be written as

9

k

= —In(RND) 32)

=

where RND is a random number chosen uniformly inside
the interval O to 1; 7, (k = 1, 2, ..., n) are the consequtive
residence times in a given state. Equation 32 allows us to
calculate a set of residence times in closed and open states
and thus to generate the time course of the ionic current
through the channel for a given experiment.

The time-dependent channel potential profile is periodic
and 7 is therefore also a function of time. For this reason,
Eq. 32 must be extended to yield the consecutive 7, values
for the periodically modulated channel potential. We do this
by introducing a periodic term in the equation relating the
transition rate or the inverse average residence time to the
activation energy AU:

k == = pe~(AUKD (33)

QU=

where v is the oscillation frequency of the gate inside the
channel complex and kT is the thermal noise acting on it. In
the presence of a periodic driving force, the activation
energy changes as

U= AU, + €t (34)

where AUj is the activation energy without driving and &(t)
is the forcing function. For convenience, we split the aver-
age residence times of the channel states into two parts, 7,
corresponding to the stationary potential, and another part,
which incorporates the periodically modulated potential
profile:

= pe~BUo+eWKT) — _l eSOKT — 1+p _COS il
To To

(35)

Al =

Combining Eqgs. 32 and 35 yields the length of residence
times in the presence of the driving signal:

75°In(RND)

1+ Pocos wyt (36)

1.::(‘ =
where 7;° are random residence times for closed and open
states, respectively; 7;° are nonmodulated parts of the av-
erage residence times in closed and open states; and p° are
the modulation amplitudes for the respective rates.

Numerical simulations were performed in MATLAB. At
first, the series of closed and open time intervals were
calculated according to Eq. 36. Subsequently, a single-
channel current recording in real time was obtained by
sampling this series at a sampling time smaller than the
characteristic period of the channel. The obtained data,
containing approximately half a million points in a routine
simulation experiment, were split into overlapping sections
(the overlap rate was half the section length) of 16,384
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points; the Hanning window was applied to each data sec-
tion. Numerical simulations were performed at rather high p
values (p = 0.5) to make the discussed effects more visible.

Fig. 3 A is a plot of the power spectral density as a
function of frequency for simulated time series data with the
channel dwell times calculated according to Eq. 36, and
with equal transition rates from open to closed and closed to
open states (symmetrical case). The power spectrum con-
sists of two parts. One part is the broadband noise, which is
a characteristic Lorentzian distribution, and the other part is
the signal output, which is represented by a peak at a
frequency of the external modulating signal. As can be seen,
the signal strength increases with the amplitude of modu-
lating signal (Fig. 3 B) and decreases when the signal
frequency is increased (Fig. 3 C). The signal strength found
by numerical simulations (filled circles) is in good agree-
ment with the predictions (line) of Eq. 30.

The simple algorithm we used to calculate the dwell
times is very fast, and it gives good results for values of p <
0.8 and for modulation frequencies less than the cut-off
frequency of the system simulated. At p values close to
unity and signal frequencies considerably higher than the
cut-off frequency, too many channel transitions are missed.
This leads to a rapid decrease of a signal power for time
series data calculated at high signal frequencies (Fig. 3 C).

An interesting observation from the theoretical derivation
is the appearance of higher harmonics of the modulating
signal in the power spectrum of the stochastic system when
the potential profile is asymmetrical, even if the signal itself
has only a single frequency component. This is illustrated
by simulations in Fig. 4. Taking the ratio 7°/7° = 10 and p =
0.6, the simulated time data series for w, = 10 has in its
power spectrum at least three clearly visible peaks. The
peaks obtained from simulations agree well with the values
calculated according to Eq. 27.

Fig. 5 illustrates the theoretical prediction that the signal-
to-noise ratio increases when the channel transition rates
increase (Eq. 31). The reason for this effect is twofold—
first, the total noise power does not depend on the magni-
tude of the transition rates, and, second, the higher transition
rates lead to an increased dispersion of the Lorentzian part
of the power spectrum. These two effects in combination
cause lowering of the noise floor, which enhances the sig-
nal-to-noise ratio.

The amplification of an external signal brought about by
an increase in the number of synchronously modulated
channels is seen from the simulation results shown in Fig. 6.
For two channels (Fig. 6 B) operating synchronously, the
signal amplitude is twice as big as for a single channel
(Fig. 6 A).

DISCUSSION

We have shown in this investigation, by numerical simula-
tions and by theoretical analysis, that a coherent modulation
of ion channel gating by an external signal leads to the
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FIGURE 3 (A) A characteristic power spectrum from simulated time
series data for a single channel with symmetrical modulation. The param-
eters are p° = p® = 0.6, ° = 1° = 0.005, and w, = 10. Inset: The low
frequency part of the same power spectrum is shown to make the signal
peak visible. (B) The simulated output power magnitude for the signal (@)
as a function of the modulation amplitude. The solid line represents a
theoretically expected signal power computed from Eq. 18. The parameters
are ™ = 7° = 0.01 and w, = 10.3544, and the current i through an open
channel is 0.02. The signal frequency is centered on one of the bins to
avoid the division of signal power among several bins. (C) Experimental
(@) and theoretical ( ) dependence of signal power on the
modulating frequency. The parameters are 7° = 7 = 0.01 and p°® = p° =
0.1, and the current through an open channel is 0.02.
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FIGURE 4 The figure shows the appearance of higher harmonics in the
transformed signal. The power spectrum from simulated time series data is
shown for an asymmetrical single channel modulated with a symmetrical
signal. The parameter values are p° = p° = 0.6, 7° = 0.01, ™ = 0.001, and
w; = 10. Inset: The low-frequency part of the same power spectrum is
shown to make visible the signal peak and its harmonics. Filled circles
correspond to theoretically calculated peak amplitudes (Eq. 15).

occurrence of a periodic component in the ion current across
a membrane containing a system of multiple channels. We
have also shown that the amplification of the signal power
depends on the number of channels and the magnitude of
rate constants. However, the response of the cell to the
modulated component of the channel current and, conse-
quently, any possible biological consequences will also
depend on the presence and sensitivity of a cellular detector
for this signal.

The periodic or oscillating intracellular biochemical pro-
cesses (for instance, a cytosolic calcium oscillator that has
been demonstrated in many cell types; Fewtrell, 1994) are
the most probable candidates for the role of the signal
“detector.” Such a “detector” may be assumed to have a
very narrow bandwidth Aw, which should be introduced
into Eq. 31 to describe the oscillator’s response to changes
in ion influx caused by both the external signal and random
fluctuations.

This can be done by noting that the Lorentzian noise of a
two-state channel system decays inversely proportionally to
(K*)? + ® (DeFelice, 1981). For a system of N identical
two-state channels, the total noise power within a small
frequency interval Aw is equal to

N2 K*(K) — (K))

Plw)Aw = KV T o Aw 37

where we have assumed that the contribution to the total
noise of the periodic signal is small (|p°], |[p°| << 1). If we
assume that the interval Aw is centered around w, and divide
the noise power within Aw by the total noise power
JoP(w)dw, we get from Eq. 37 the fraction of the total noise
power F, which is transmitted to the oscillator:

noise power within Ao 2 K'Aw
B T w (K + o

total noise power (38)
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FIGURE 5 The dependence of the signal-to-noise ratio
on the channel transition rates. (A) The transition rates are
k° = k¢ = 100. (B) k° = k° = 1000. The modulating signal
frequency in both cases is w, = 10 and p°® = p° = 0.6. In
case (B) the noise floor is seen to be considerably lowered
because of the increased transition rates. This lowering
enhances the signal level over the noise level.
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The signal-to-noise ratio at the detector level is then

signal power

SNR(Aw) = F X total noise power (39)
Therefore we get, by dividing Eq. 31 by Eq. 38,
mQ p*(kiko)
SNR(Aw) = N?s m (40a)
or
signal amplitude 7Q | kokg
noise amplitude p VN w; \kg + kg (40b)

where p = (p° — p)/2 and Q is the quality factor (w/Aw)
of the biochemical oscillator.

Equation 40 brings together in two simple formulas all
parameters that determine the amplification of the external
electromagnetic signal by a system of N identical ion chan-
nels. As has been already mentioned above, these parame-
ters are of two essentially different types. One part, namely,
N, p, kg, and kg, characterize physical properties of ion
channels that define the power of the periodic component of
the ion current across a cell membrane. The other part, the
quality factor Q, is the only parameter that, within this
model, describes the coupling and response of cell metab-
olism to the external influence. The coupling parameter Q
will determine the possible, if any, occurrence and size of
the biological effects.

Equation 40 can also be expressed in terms of average
open times 7° and average closed times 7°, which are simply
the inverse of the corresponding rate constants. This gives a

particularly simple expression for the ratio of signal and
noise amplitudes:

signal amplitude \[6 1
noise amplitude p N2fs P+ @1
where the signal frequency f; is used instead of the angular
frequency. Equation 41 is seen to contain the signal-to-noise
ratio of the initial absorption process, multiplied by an
amplification factor that has been calculated assuming the
equality between the signal frequency and the characteristic
frequency of an intracellular detector. An estimate of the
magnitude of amplification will be made in the following
section.

Estimate of the signal amplification in a
channel system

To assess the magnitude of amplification of an external
electromagnetic signal that is capable of modulating chan-
nel gating, we consider a membrane with N voltage-gated
channels and a biochemical oscillator (calcium oscillator),
which we assume to be the detector of the modulated ion
current.

To get an estimate of the signal amplitude, we compute
the electric field E induced across the ion channel complex
by a 50-Hz alternating magnetic field of amplitude B = 100
wT. This follows from the integral form of Faraday’s law:

_d(JsB-ds) _dd
fﬁE-dl—T—E (42)
1
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where S is an area through which the field B passes, creating
a magnetic flux ®, and / is a path bounding the area S. Then
the mean amplitude of the induced electric field Eg across a
channel that sits in the membrane of a spherical cell with a
radius r, = 10 um is

B = wr 1.5r,
B7 2 d

43)

where w is the angular frequency and r is the radius of the
area S. The factor 1.5r./d, where d is membrane thickness,
corrects for the increase in the field intensity caused by the
high resistivity of a membrane relative to the tissue electro-
lyte. Then, assuming r = 10 cm (the radius of the cross
section of a human body), Eq. 43 yields Eg ~ 2.5 V/m, and
the induced potential difference between two opposite
points on a channel V, , = Eg - d is ~2.5 X 107> mV.

This potential difference synchronously modulates all N
voltage-gated channels present in the membrane. As a result
of this modulation, the external electromagnetic signal is
transformed into a periodic component in the ion current
across the membrane. This component, according to the
proposed mechanism, acts as a perturbing factor of the Ca
oscillator. The ratio between amplitudes of this perturbing
signal and noise follows from Eq. 41.

The magnitude of the signal amplitude p in Eq. 41 is then
computed as a maximum energy uptake in units of k7 of the
gating charge of the channel. Taking a channel gating
charge g = 10e, we obtain p = g * V, ,o/kT ~ 1075,

Besides the signal amplitude p and the channel number N,
the amplification depends on average open and closed
times, and the quality factor Q of the biochemical (calcium)
oscillator. Because most types of ion channels exhibit burst-
like appearances, we assume in order to explore the pro-
posed mechanism under optimal conditions that the average
open and closed times are in the usec range, that is 7° =
7° = 10~ ° sec (Colquhoun and Hawkes, 1995).

The quality factor Q can be estimated roughly from
results given in the literature. Several frequency dependent
biological effects of the weak electromagnetic fields have
been detected such as the dependence of the motility of a
marine diatom Amphora coffeaeformis on exposure to cer-
tain combinations of alternating and direct current magnetic
fields (McLeod et al., 1987; Smith et al., 1987; Reece et al.,
1989). The maximum estimate of Q from these data is 80.
That allows us to assume, for the purpose of this estimation,
that under optimal conditions Q = 100.

Finally, to estimate the number of channels N, we first
note that the occurrence of a periodic component in the ion
current across a cell membrane is a first-order effect, and
will be canceled out by averaging the induced electrical
field over a cell surface. It means that symmetrical cells that
have ion channels evenly distributed on their surface will
not be able to register any changes in the net ion influx
under the exposure to the external electromagnetic field.
Nevertheless, the mechanism described above will be valid
for cells that contain so-called hot spots, i.e., regions with
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high concentration of ion channels. Several cell types have
been demonstrated to possess such regions of high ion
channel concentration, for instance, neurons (synapses), B-
cells from the pancreas (Bokvist et al., 1995), and others
(Kasai et al., 1993; Thorn et al., 1993). The channel mole-
cule densities in specific areas of membranes of excitable
cells are very high (up to several thousands per square pm),
which justifies the approximation of 1000 channels. Al-
though in membranes of nonexcitable cells the density of
channel molecules is considerably lower, it has been dem-
onstrated experimentally for pancreatic B-cells that the
number of channels found in “hot spots” may be close to a
thousand (Bokvist et al., 1995). The same is true for many
types of asymmetrical or vectorial cells, for example, en-
terocytes of intestinal epithelium, the functional organiza-
tion of which is such as to create a unidirectional flow of
nutrients across the intestinal wall.
Inserting the estimated values in Eq. 41 finally gives

signal amplitude NQ 1 03 (44
noise amplitude  © \'2f, N @4

Although this is still a small value, it shows that the ampli-
fication is large enough to bring the signal into the range of
detection by a sufficiently efficient detector.

We do not discuss within this investigation the possible
net accumulation of ions under the exposure to the harmonic
electromagnetic field, since this is a second-order effect
(Astumian et al.,, 1995). However, in our treatment the
accumulation of ions can be conveniently derived by ana-
lyzing the higher order terms in ¢, (Eq. 14), because c,, gives
the contribution from the modulating signal to the constant
part of the ion flux, i.e., it describes the rectification of a
time varying signal in a system of ion channels.

An additional possibility for amplification, not contained
in our treatment, is the mixing of the applied signal with the
external random noise component, which, by the mecha-
nism of stochastic resonance, can enhance the detection
limits of cells responding to the external electromagnetic
fields (Bezrukov and Vodyanoy, 1997).

In summary, we have focused in this study on the primary
mechanisms that a biological cell can use to amplify weak
external influences, for instance, an alternating magnetic
field. Such amplification mechanisms have tended to be
overlooked in attempts to explain the response of cells
exposed to electromagnetic fields. We have shown that a
system of identical ion channels embedded in a membrane
and synchronously modulated can significantly amplify the
original signal. The amplification of the signal amplitude
relative to the noise amplitude is proportional to the square
root of the number of channels modulated and inversely
proportional to the square root of the sum of the average
channel dwell times. For the external influence to be bio-
logically important, the capability of a cell to detect periodic
changes in ionic influx is essential. The cytosolic Ca®*
oscillator, a complex system of biochemical reactions that
allows a cell to create sophisticated spatiotemporal patterns
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of Ca®* intracellular concentration, may function as a de-
tector of the small periodic component of Ca influx.
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